

http://www.cit.ie

Cognitive Radio Networks and Blockchain

Mubashir Husain Rehmani

Mubashir.Rehmani@cit.ie

- Wireless Radio Spectrum
- Cognitive Radio Networks
 - White spaces
- Blockchain
- Cognitive Radio Networks and Blockchain Applications
 - Spectrum Tracking
 - Spectrum Trading

Operating Features of Wireless Standards

Wireless Standard	Frequency Band	Deployment	Application
AM	531-1611 kHz	Outdoors	Radio broadcast
FM	66-108 MHz	Outdoors and Indoors	High quality audio over radio broadcast
GSM, CDMA, LTE	700-2600 MHz	Outdoors and Indoors	Cellular Voice and Data
IEEE 802.15.1 (Bluetooth)	2.4 – 2.485 GHz	Most Indoors	Short range communication
IEEE 802.11 (Wi-Fi)	2.4 GHz, 5 GHz, 60 GHz	Indoor and Campus wide	WLAN
IEEE 802.20	3.5 GHz	Outdoors	Mobile broadband

Wireless Radio Spectrum is a natural resource!

Wireless Radio Spectrum

- Licensed band
- Unlicensed band
 - Industrial, Scientific, and Medical (ISM)
 - Defined in ITU Radio Regulations
 - Applications
 - Cordless Phones
 - Bluetooth devices
 - Near Field Communication (NFC) devices
 - Wi-Fi
 - Garage door openers
- Germany raised 6.55 Billion € for 5G mobile spectrum auction
 - For 420 MHz of spectrum block is auctioned by Federal Network Regulator (BNetzA)
- Fixed Spectrum Assignment Policy

Source: https://en.wikipedia.org/wiki/Electromagnetic_spectrum

Wireless Radio Spectrum Map – USA (FCC)

THE RADIO SPECTRUM

Wireless Radio Spectrum Map – UK (Ofcom)

Filter by sector				
Space Science	Licence exempt	Public sector	Amateur	Broadcasting
Aeronautical	Maritime	Business Radio	PMSE	Satellite
Mobile and Wireless broadband	Fixed Links			

Range of 0 Hz - 2.1905 MHz

🖶 Print page: Map Map & table Table

Range of 1.805 - 3.4 GHz

🖶 Print page: Map Map & table Table

CIT

Wireless Radio Spectrum Map – Ireland (ComReg)

Frequency Band (GHz)	πυ	European	National Usage	Legislation	CEPT	Notes
		ECA17A	IRL1			
	FIXED	FIXED	FWALA (10.15-10.3 and 10.5-10.85 GHz)	National Legislation: S.I. 79 of 2003 S.I. 530 of 2003	ERC/REC 12-05	FWA services (10.5 – 10.85 GHz). See ComReg document 08/17R7 for details of band plan and pairing arrangements.
10.55 - 10.6 GHz	MOBILE EXCEPT AERONAUTICAL MOBILE	MOBILE EXCEPT AERONAUTICAL MOBILE				
	Radiolocation	Radiolocation				
			PMSE		ERC/REC 25-10	See ComReg document 08/08R, as revised.
		ECA17A	IRL1			
10.6 - 10.68 GHz	EARTH EXPLORATION- SATELLITE (passive)	EARTH EXPLORATION- SATELLITE (passive)				
	FIXED	FIXED	FWALA (10.15-10.3 and 10.5-10.85 GHz)	National Legislation: S.I. 79 of 2003 S.I. 530 of 2003	ECC/DEC/(10)01	FWA services (10.5 – 10.65 GHz). See ComReg document 08/17R7 for details of band plan and pairing arrangements

Radio Frequency Plan for Ireland

10GHz to 3000GHz

Behavior of Wireless Radio Spectrum

Lower Frequencies to Higher Frequencies

Wireless Radio Spectrum Occupancy

...Most Spectrum Is Unused!

Due to:

- Fixed spectrum assignment policy
- Limited available spectrum in today's wireless network
- Results In:
 - Inefficiency in spectrum usage
 - Creation of Spectrum Holes \rightarrow White space

[1] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, "Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey," Computer Networks, vol. 50, Issue 13, pp. 2127 – 2159, 2006.

Cognitive Radio Networks

- Cognitive Radio (CR)
 - A "radio" that can be programmed and configured dynamically
 - Can change its transmission or reception parameters
 - A.k.a., Secondary User
- Cognitive Radio Networks
 - Primary User (PU) \rightarrow Licensed User
 - Secondary User (SU) → Unlicensed User
- CR opportunistically use the wireless radio spectrum
 - CR transmissions should not degrade the reception quality of Primary Radio (PR) nodes
 - CR node should immediately interrupt its transmission whenever any neighboring PR activity is detected

CRN and its Functionalities

 Cognitive Radio nodes <u>opportunistically</u> exploit the <u>licensed</u> band

- <u>Spectrum Sensing</u>: Detect <u>unused spectrum</u> and presence of licensed users
- Spectrum Management: Select best available channel
- <u>Spectrum Sharing</u>: Coordinate access to this channel with other users
- <u>Spectrum Mobility</u>: Vacate the channel when a licensed user is detected and maintaining seamless communication

Cognitive Radio Network Architecture

PR Nodes Activity Pattern

- Long Term PR Activity:
 - Long ON and Long OFF
 - Free call packages
- High PR Activity:
 - Long ON and Short OFF
 - Rush hours, urban areas
- Low PR Activity:
 - Short ON and Long OFF
 - Remote areas, less peak hou
- Intermittent PR Activity:
 - Short ON and Short OFF
 - Bus stations, railway stations

White Space

- A white space is an unused radio frequency band
- Its existence depends upon time, frequency and geographical band
- Its utilization does not cause harmful interference to primary users

Next, it is shown that white space

- Do not necessarily exist only in an idle band,
- Are not necessarily limited to specific dimensions of the signal space, and
- Are not necessarily limited to licensed frequency bands

White Space CIT **CR** users transmits simultaneously with PUs on White Space licensed frequency bands by changing characteristics of CR signal. Spectrum Spectrum Interweave Underlay Overlay Power / Range Non-Cooperative Time Cooperative **Underlay-Relay** Code Frequency Hybrid Full Duplex Spectrum Geographical Angle Mapping CR users transmits on licensed CR users interweave their signal Beam band using low-power devices Polarization along side the PU's signal. Forming with a limited range.

Underlay Communication

Use of Cognitive Radio Networks

- Tactical Networks Behind the Enemy Lines
- TV White Space *IEEE 802.22*
- White-Fi IEEE 802.11af WLAN operation in TVWS
- Cognitive Radio based Smart Grid (CRSG)
- Cognitive Radio Sensor Networks (CRSN)
- Cognitive Radio based Disaster Response Networks
- Cognitive Radio based Wi-Fi
- Cognitive Radio based Satellite Communication
- Cognitive Radio Cellular Networks

Telecommunication Infrastructure Destruction through Natural Disasters

CII

Restoration of Partially Destroyed Telecommunication Networks and CRNs

- Instantaneous deployment of core telecommunication infrastructure is not feasible
 - Due to planning and cost
 - E.g. base stations in the case of cellular networks
- Quick need to help rescue team members and NGOs
 - To facilitate organized help
 - Rehabilitation works

Need for Disaster Response Networks

To provide connectivity and Internet access

Cognitive Radio Networks

Summary: Future Cognitive Radio Communication

Blockchain Technology

Setting the Context and Background

Crypto Currency Price (Sep 2019)

#	Crypto Currencies	Market Cap	Price
1	Bitcoin 😕	\$180,753,854,317	<u>\$10,081.66</u>
2	Ethereum 🔶	\$19,321,339,299	<u>\$179.41</u>
3	XRP X	\$11,065,349,258	<u>\$0.257188</u>
4	Bitcoin Cash 🔞	\$5,430,496,998	<u>\$301.75</u>
5	Litecoin 🛃	\$4,480,564,995	<u>\$70.86</u>
6	EOS	\$3,487,353,962	<u>\$3.74</u>
7	Binance Coin 📀	\$3,353,638,703	<u>\$21.56</u>
8	Bitcoin SV 😕	\$2,207,462,185	<u>\$123.63</u>
9	Monero	\$1,220,939,742	<u>\$70.97</u>
10	<u>Cardano</u>	\$1,189,244,517	<u>\$0.045869</u>

Source: https://coinmarketcap.com/coins/

Bitcoin and Ether are based on Blockchain

Blockchain Technology

Blockchain is a Distributed Ledger System

Blockchain

- A <u>blockchain</u> is a distributed ledger that is structured into a linked link of blocks. Each block contains an ordered set of transactions.
 - This distributed ledger is distributed across many machines.
 - Typical solutions use cryptographic hashes to secure the link from a block to its predecessor.
 - New transactions can be added, but old transactions cannot be deleted or modified.

Vital Characteristics of Blockchain

Classification of Blockchains

Source: Everything you wanted to know about blockchain, IEEE Consumer Electronics Magazine, 2018.

Cognitive Radio Networks and Blockchain Technology

Wireless Radio Spectrum is Natural Resource!

Wireless Radio Spectrum is an Asset!

Blockchain and Spectrum Management

- Blockchain can help to establish
 - Trust among different organizations
 - Managing and involving in the spectrum regulation including spectrum sharing and trading market.
- It can also help to store data related with the complete life cycle of spectrum management i.e., from
 - Spectrum regulation,
 - Spectrum management,
 - Spectrum sharing, and
 - Spectrum trading.

Tracking of Wireless Radio Spectrum

Smart Contracts and Spectrum Trading

- <u>Smart contracts</u> can revolutionize the spectrum trading process.
- With smart contracts, several <u>new business models for</u> <u>spectrum trading</u> can now be realized.
- <u>Future trading</u> of spectrum can now be possible upon completion of a certain condition.
- Can reduce the <u>business process time</u>.
- Make the system more <u>autonomous</u> by removing the dependency to different entities involved with this spectrum management life cycle.

Spectrum Trading for Short Period of Time

- Consider the availability of spectrum in terms of time.
- Traditionally, spectrum can be traded only for duration of:
 - Months, weeks, and days.
- Now it can also be sold on short periods of time, such as:
 - Hours, minutes, and even seconds.
- This new paradigm of spectrum trading of very short periods of time will:
 - Enhance spectrum utilization
 - Improve the revenue generation.

References and Further Reading

- C. Sengul, "<u>Distributed Ledgers for Spectrum Authorization</u>," in IEEE Internet Computing, vol. 24, no. 3, pp. 7-18, 1 May-June 2020.
- M. B. H. Weiss, K. Werbach, D. C. Sicker and C. E. C. Bastidas, "<u>On the</u> <u>Application of Blockchains to Spectrum Management</u>," in IEEE Transactions on Cognitive Communications and Networking, vol. 5, no. 2, pp. 193-205, June 2019.
- S. Bayhan, A. Zubow, P. Gawłowicz and A. Wolisz, "<u>Smart Contracts for</u> <u>Spectrum Sensing as a Service</u>," in IEEE Transactions on Cognitive Communications and Networking, vol. 5, no. 3, pp. 648-660, Sept. 2019.
- K. Kotobi and S. G. Bilen, "<u>Secure Blockchains for Dynamic Spectrum Access: A Decentralized Database in Moving Cognitive Radio Networks Enhances Security and User Access</u>," in IEEE Vehicular Technology Magazine, vol. 13, no. 1, pp. 32-39, March 2018.

Thanks Questions?